Large Language Models: Due to the risks, NASA decides against fine tuning a generative earth science LLM.“Based on our initial assessment, the costs and risks associated with developing an exclusive NASA Science Mission Directorate (SMD) decoder (generative) model currently outweigh the benefits.”In a paper published yesterday in the American Geophysical Union (AGU) - Perspectives of... Continue Reading →
AI Digital Assistant for Earth Observation
ESA Φ-lab have created an AI-powered digital assistant that allows users to access and explore complex Earth Observation data through a natural language interface.“In the long term, the aim is to integrate this tool into digital twins of Earth, supporting decision-making in areas such as climate monitoring, disaster management and urban planning.A digital twin of... Continue Reading →
Text Embeddings for Rock Classifications
I tested if we might differentiate rock types and their associations based on the patterns of words that occur around them in large archives of geological reports. Using a text embeddings model generated through the unsupervised machine learning from thousands of geological survey reports, approximately 2,000 rock type names were compared to each other. The... Continue Reading →
Text Embeddings for Mineral Association Discovery
Data driven discovery: It may be interesting to compare the similarities of minerals based on their co-occuring words in large amounts of archive geological reports, to actual known reported mineral occurrences in databases such as Mindat. One could perhaps easily automate this algorithmic comparison, leaving ranked "candidate" mineral associations not present in reference databases. There... Continue Reading →
Misconceptions of LLM Chatbots in Geoscience
Misconceptions of LLM Chatbots: For scientists and business professionals it is critical to know the source of any AI generated answer or assertion. If we cannot trace the sources accurately we are unlikely to trust the output. Imagine reading a literature review where no sources were cited.The technique used to provide as accurate as possible... Continue Reading →
Over 150 BSc, MSc and PhD geological questions released to help benchmark geological Gen AI
Over 150 BSc, MSc and PhD geological questions released to help benchmark geological Gen AI. These were released by the team at GeologyOracle the free AI to answer geological questions, extract data from documents, code and interpret sketches and photographs.Hopefully more elements will be Open-sourced over the coming months such as the open-access training data... Continue Reading →
Critical Minerals, Artificial Intelligence and the United States Geological Survey (USGS).
A collaboration between the USGS, DARPA, and ARPA-E called CriticalMAAS could deliver AI tools to solve US critical mineral challenges.“Geologists and innovators from the U.S. Geological Survey, the Defense Advanced Research Projects Agency (DARPA), the Advanced Research Projects Agency-Energy (ARPA-E), and other partners came together Jan. 13-17 to collaborate, train, and transition artificial intelligence (AI)... Continue Reading →
Using Large Language Models (Google Gemini) to estimate earthquake shaking intensity from social media posts
Using Large Language Models to estimate the intensity of earthquake shaking from multimodal social media posts.Interesting paper from Mousavi et al (2025) using Google’s Gemini 1.5 Pro LLM to estimate earthquake intensity from social media and CCTV. The authors state:“Our experiments demonstrate that Gemini can estimate ground shaking intensity based on the content of a... Continue Reading →
Querying structured databases in natural language using Large Language Models (Open AI’s GPT-4) for Geoscience Data Analysis
Open access code: Querying one of the largest mineral databases in the world using natural language for co-occurrence mineral analysis and heat map visualization for geoscience data analysis.Interesting paper from Zhang et al (2025) from the University of Idaho connecting Open AI's GPT-4o Large Language Model (LLM) through prompt engineering to the mineral database Mindat... Continue Reading →
World’s First Peer-Reviewed Paper on Artificial Intelligence (AI) Ethics in the Geological Sciences with a focus on Language Models.
Delighted my paper on AI Ethics in the Geological Sciences has been published today in the peer reviewed open access Journal of Geoethics and Social Geosciences!AbstractArtificial Intelligence (AI) offers many opportunities for the geosciences to improve productivity, reduce uncertainty in models and stimulate discovery of new knowledge. There are also risks to geoscience, from the... Continue Reading →